
DTIC FILE Cop~yAD 2390

AN ARTIFACT FILTER FOR

EVENT-RELATED POTENTIALS

R.R. Stanny and S.J. LaCour

DTIC

J U. JL 10 1990rI~N~

Naval Aerospace Medical Research Laboratory
Naval Air Stationi () 017 10 038

Pensacola, Florida 32508-5700
Approved for public release; distribution unlimited.

Reviewed and avproved a z '?9'

6 A. BADY, CAP MSC USN
Commanding Officer

This research was sponsored by the Naval Medical Research and Development
Command under work unit 62233N MM33P30.001-7001.

The views expressed in this article are those of the authors and do not

reflect the official policy or position of the Department of the Navy,
Department of Defense, nor the U.S. Government.

Trade names of materials and/or products of commercial or nongovernment
organizations are cited as needed for precision. These citations do not

constitute official endorsement or approval of the use of such commercial

materials and/or products.

Reproduction in whole or in part is permitted for any purpose of the United

States Government.

RPR D C M NA 1 Form ApprovedREPORT DOCUMENTATION PAGE 0M3 No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response. including the time for reviewing instructions, searching existing data sources
gatherng and maintaining ihe data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this
collection of information, Including suggestions for reducing this burden to Washington Headquarters Services. Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204. Arlington. ViA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704.0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
April 1990

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

An Artifact Filter for Event-related Potentials

62234N
6. AUTHOR(S) RS341421. 01

R. R. Stanny and S. J. LaCour*

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Aerospace Medical Research Laboratory REPORT NUMBER
Naval Air Station, Bldg. 1953 NAMRL Special Report
Pensaco a, FL 32508-5700 90-2

9. SPOnSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Office of Naval Technology AGENCY REPORT NUMBER
800 N. Quincy Street
Arlington, VA 22217
Naval Personnel Research and Development Center
San Diego, CA 92152-6800

11. SUPPLEMENTARY NOTES

Navy Regional Data Automation Center, Pensacola, FL 32508-5700

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release;
distribution is unlimited.

43. ABSTRACT (Maximum 200 words)
Scalp-surface recordings of event-related potentials (ERPs) are frequently
contaminated by electrical artifacts. We describe a Fortran 77 computer program that
examines ERP data for several types of electrical artifects: eyeblinks, voltages
spikes, large local voltages, large overall voltages, amplifier saturation effects,
and dead-amplifier effects. Wbere possible, the program compensates the ERF data for •,
electrooculogram artifacts by time-domain cross-regression procedures \

01"

\V\ vr r) ,1,

14. SUBJECT 2 RMS 15. NUMBE9 OF PAGES
40

Perforniance assessment, event-related potentials, -16, r,-CE CODE
evoked potentials, psychophysiology)ý-:5 A ,6 I 1"6,

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)"i',I.stbed by 41NSI Sid /I -18
2'81 .1(2

SUMMARY PAGE

THE PROBLEM

We are using event-related potentials (ERPs) to characterize the changes
in cognition that occur when a high level of performance must be sustained for
many hours despite fatigue and loss of sleep. The need for such performance
occurs during the repeated, long-range tactical missions that characterize
sus*-ained and continous operations in naval aviation.

FINDINGS

We describe a computer program we have developed that scans ERP data for
several types of electrical artifacts. When feasible, the program attempts to
correct the electroencephalogram (EEG) for the effects of eye movements and
blinks. After doing so, the program checks the success of its corrections,
writes a data file of the remaining artifacts, and writes the corrected EEG to a
data file. A copy of the program's source code is included as an appendix.

RECOMMENDATIONS

Clearly, ERP data must be routinely screened for electrical artifacts.
The algorithms used in this program represent several contemporary approaches
to the artifact-detection problem. None of these algorithms is fully
satisfactory when used in isolation. Combining them, however, yields an
improved quality-control system for ERP studies.

Accession ForI--L

NTIS GCA&I
DTIC TAB
Unnnnoui;c ,d E]

By
1 Diotribution/

WO Availability Codes
IAMail and/or

kdoz- I_iDist spooial

INTRODUCTION

An ERP is an aggi.ýgate electrical field produced when a population of
neurons discharge simultaneously in response to a sensory or internal event.
The amplitudes of ERPs are greatly attenuated as they propagate from the brain
to the surface of the scalp. As A result, ERPs recorded at the scalp are
easily contaminated by stray electrical events. These electrical artifacts
can render data sets unusablP. If they pass undetected, they can render a
data set misleading. Consequently, artifact detection is among the most
impor'tant aspects of ERP recording technique. For these reasons, we have
written a computer program that scans ERP data for several types of electrical
artifacts. This report describes our program.

We review the topic of electroencephalogram (EEG) and ERP artifacts only
briefly; a comprehcnsive discussion of the topic can be found elsewhere (1).

We use the term artifact here to refer to any potential that makes a sample of
ERP data unusable, including random noise.

The amplitudes of ERPs recorded with scalp-surface electrodes are small,
within roughly an order of magnitude of 1 uV. Hence, they are easily
contaminated by extraneous voltages. Such artifacts may be biological
potentials of nonneuronal origin or nonbiological potentials generated by the
recording system or nearby electrical equipment. For example, artifacts in
ERP recordings include potentials from eye mo-,ements and blinks, muscle
contractions, tongue movements (the tongue is polarized end-to-end), galvanic
skin responses, changes in the skin-electrode interface, and movements of
electrode leads. Line-power a,:tifacts occur when equipment is improperly
grounded, electrode impedances are high, or electrode leads are placed too
near power cords or other radi.ant sources. Aliasing artifacts occur when the
EEG is converted to a digital format without first removing frequency
components above one-half of the sampling rate (1).

Adjusting instrumentation and/or procedures will minimize or eliminate
many artifacts. Others are difficult or impossible to avoid. Artifacts from
subjects are usually least controllable: Subjects blink, move, and emit
galvanic skin responses despite instructions to the contrary. Usually, the
best one can do is to identify any artifacts and ensure that they do not
compromise the data. Our computer program should assist in that effort.

This report contains three major sections and an appendix. Section 1
discusses artifact detection and correction techniques of the artifact
filtering program, Artfil; section " describes how the program is used; ano
section 3 contains system requirements. The appendix inclides a copy of the
program's source code.

1. ARTIFACT DETECTION AND CORRECTION

ARTIFACT DETECTION

Artfil checks the EEG and electrooculog)'am (EOG) for six types of
artifacts: (1) eyeblinks, (2) voltage spikrs, (3) large absolute voltages (4)
large root-mean-square (rms) voltages, (5) dead EEG channels, and (6)
amplifier clipping (or saturation).

1

1. E-e blink detection is performed u:iing an algorithm described by
Gratton, Coles, and Donchin (2). A blink is identified when the local slope
of the vertical EOG trace exceeds a critical value, blinkcrit. A local EOG
slope exceeding blinkcrit indicates eyelid movement and, hence, a blink.
After Gratton et al., we define blinkcrit as a criterion change in voltage
during a 10-ms interval.

2. Spike detection is performed similarly to blink detection. Spikes
are identified when the difference between successive voltage-values in an EEG
or EOG time series exceeds a criterion value, spikecrit. The vertical EOG is
not scanned for spikes, which could be confused with blinks. If an EEG
channel or the lateral EOG channel contains a spike artifact, the data are not
corrected for ocular artifacts and are flagged for rejection.

3. Large absolute voltages are detected by comparing each voltage in
the EEG tim3 ser 4 es to a criterion voltage, artcrit, after the eye-movement
compensation algorithm described presently has been applied to the EEG data.
Any epoch and channel of EEG data that contains an absolute voltage exceeding
artcrit, after ocular artifact compensation, will be flagged for rejection.
This is probably the most widely used technique for detecting artifacts in ERP
data. A check of this type is often applied to a single EOG channel or a
frontal EEG channel. In contrast, Artfil checks all EEG channels for absolute
voltage artifacts after correcting the EEG for EOG contamination. It does not
search the EOG for absolute-voltage artifacts of this type. It does, however,
search the EOG for voltages large enough to cause amplifier saturation because
amplifier saturation renders ocular-artifact compensation impossible.

4. Large rms voltages are detected by comparing the overall root-
mean-sqiared amplitude of each epoch of data with a criterion value, rmscrit.
The quantity compared to rmscrit is the standard deviation of the points
withia a given epoch and channel. An epoch and channel of data will be
flagged for rejection if its rms voltage exceeds rmscrit after ocular a.rtifact
compensation has been performed. The rmscrit should be set to a value sub-
stantially smaller than the absolute-voltage criterion, voltcrit. This is
because overall rms voltages are inherently smaller than peak voltages.

5. Dead EEG channels are detected by comparing the overall rips
amplitude of each epoch of data with a criterion value, deadcrit. Any epoch
and channel with an overall rms voltage less than deadcrit will be flagged for
rejection.

6. Amplifier saturation is detected by comparing the absolute value
of each voltage in each epoch of data with a criteric .lue, clipcrit. For
computational speed and convenience, we define clipcrit as an input voltage
large enough to cause an amplifier to saturate. That is, the output voltage
that will produce clipping is divided by amplifier gain to yield the value of
clipcrit. A error in amplifier calibration could cause Artfil to miss
instances of clipping. Thi2 can be minimized by setting clipcrit to 90-95% of
an amplifier's actual clipping voltage, assuming calibration accuracy.
Separate clipping criteria can be applied to the EEG and EOG data, as
discussed in section 2.

2

TREATMENT OF OCULAR ARTIFACTS

Eye movements and blinks produce electrical potentials that can be
recorded with EEG electrodes. Changes in the spatial distribution of the
eyes' standing electrical fields that occur when the eyes move in the head
cause eye-movement artifacts. Eyeblink artifacts are transie.nt changes in
these fields due to resistance changes associated with eyelid movemLts (see
reference 1 for a discu-islon). The locations of the active and reference
electrodes determine the amplitudes of both types of artifacts. When recorded
by EEG electrodes placed at sites commonly used for ERP recording, the ampli-
tudes of ocular artifacts are often larger than those of ERPs.

Generally, eye movements are monitored by recording at least one channel
of EOG along with the EEG to detect EEG segments that may be contaminated by
ocular potentials. The customary procedure is to reject an epoch of EEG when
the EOG exceeds a criterion absolute voltage. This widely used strategy is
simple and requires only two assumptions. The first assumption is that the
detection procedure is sensitive enough that any contamination produced by
undetected eye movements can be safely ignored. Th3 second is that excluding
EEG with eye-movement artifacts does not produce a biased data set. To our
knowledge, neither assumption has been thoroughly examined and verified.

An alternative is to use EOG recordings to remove ocular potentials frGm
the EEG (see reference 1 for a review), as in Artfil. This approach also
involves assumptions, which center on the accuracy with which direct
recordings of the EOG can be used to estimate the EOG contamination present in
EEG recordings. All compensation procedures of this type involve subtracting
suitably scaled EOG waveforms from the EEG waveforms. (Sometimes the waves
are decomposed into frequency components, and the different frequencies are
scaled separately.) Because the EOG is recorded from the head, EOG electrodes
probably always record some EEG activity. Hence, these procedures probably
distort ERP data sorewhat because they involve subtracting brain activity
recorded by the EOG electrodes from brain activity recorded by the EEG
electrodes. The magnitude of this problem has not been thoroughly studied.
One way to reduce EOG contamination is to record the EOG differentially from a
pair (or pairs) of electrodes adjacent enough so ;hat the local EEG is nearly
identical in each (3). Differential amp'.ification will then tend to remove
the EEG from the EOG recording.

The ocular-artifact compensating routines of Artfil presume that bipolar
EOG recordings result from two pairs of electrodes, each containing a record-
ing electrode and a reference electrode. The program assumes that one pair of
electrodes obtained vertical EOG data, perhaps from an electrode above one eye
referred to an electrode below that eye. These data are used to detect and
compensate the data for eyeblink artifacts. The program also assumes a second
pair of electrodes obtained horizontal or oblique EOG data. We refer to this
electrode pair as the lateral EOG channel. Such data might be recorded from
electrodes placed to the left and right of one eye, or obliquely about one
eye. Artfil uses these data to correct the EEG for eye movements.

Artifil corrects the EEG for artifacts caused by eye movements and blinks
using a variant of the procedure described by Gratton et al. (2). Their
algorithm assumes that the waveform recorded from an EEG electrode can be
approximated as the sum of two time series. The first time series is the
actual EEG waveform; the other is a linearly attenuated version of the EOG.

By this assumption, thie actual EEG can be recovered from the recorded EEG by
subtracting the appropriately scaled EOG point-by-point.

The basic procelure consists of two steps, each carried out on an epoch-
by-epoch basis. In the first step, a least-squares cross regression is
calculated using the EEG time series as criterion variables and the EOG as
predictor variables. This regression estimates the constant to multiply the
EOG time series to get the best linear prediction of the EEG time series. The
constant is an estimate of the proportion of the EOG contained in the recorded
EEG. Its value is estimated separately for each EEG recording site. In the
second step, part of the recorded EOG is subtracted in pointwise fashion from
the EEG. The amount subtracted from the EEG is determined by the proportiona-
lity constant estimated in step one.

These procedures are different for eye movements and blinks. For eye
movements, the proportzon is estimated from complete EEG and EOG time se-ies.
For blinks, the proportion of EOG subtracted from the EEG is estimated from
data obtained during periods in which the local slope of the vertical EOG
(calculated in a 10-ms time window) exceeds a criterion value.

When the blink-slope criterion is properly chosen, the data used to
estimate the proportionality constant for eyeblink compensation will be
selected from the leading and trailing edges of eyeblink-artifact waveforms
(i.e., when the eyelids are ,.ýoving rapidly). Selecting an appropriate value
for this criterion is critical to the performance of the algorithm. If the
blink-scope criterion is too high, the algorithm either fails to detect blinks
or produces unstable estimates of the blink-scaling constant based on small
numbers of data points. On the other hand, if the value is too low, the
algorithm mistakes EOG noise for blinks and, thereby, underestimates the
blink-scaling constant and undercorrects the EEG for the effects of blinks.

We can only advise on how to select a value for the blink criterion. The
shapes of eyeblink waveforms depend on where the EOG electrodes are placed and
on how the data are filtered. Blinks also vary from one individual to another
and from one blink to the next. We set the slope criterion to a value that is
less than the slopes of the blink waveform leading edgis when blinks are 25-
75% of their maximum amplitudes. Because blinks are variable and because the
results of different criterion settings must be checked visually blink by
blink, selecting a value of the blink criterion can be time-consuming.

The procedure to compensate for ocular artifacts described by Gratton et
al. (2) includes a third step that is not included in Artfil. It involves
subtracting a signal-average of all epochs of the ERP data (with ocular
artifacts included) from each individual epoch of data before estimating the
scaling constants and subtracting the scaled EOG from the EEG. This step is
intended to remove the brain activity evoked by eyeblinks from the EEG data.
We examined the procedure and found that in our hands the ocular-artifact
compensating algorithm performed better without it.

4

2. USING THE PROGRAM

DATA FILES

Artfil requires two input data files and creates two output data files.
The main input data file contains digitized EEG and EOG; the default name is
,pochchan. The second input data file contains parameters used by Artfil for
artifact detection and EOG artifact compensation. The default name of this
file is artifact.p2.

The main outeut data file, the default name of which is epochchan.c,
contains digitized EEG with the ocular-artifact compensating algorithm
applied. Bec3use Artfil does not discard data with uncorrectable. artifacts,
epochchan.c contains as much EEG data as the input file epochchan. Artifil
writes the epoch and channel numbers of data with uncorrectable artifacts to a
second output data file named artifacts.

The physiological data in epochchan and epochchan.c are stored as time
series of digitized EEG and EOG amplitudes scaled in O.l-uV uvits. Values of
the EEG and EOG data are stored in the files, which are direct-accc .s, as twu-
byte integers. Each time series corresponding to data from one recording
channel in one epoch is stored as a separate record.

The layout of the epochchan files is best illustrated by considering each
voltage in the file as an element in a triply subscripted voltage array,

, The subscript e indexes the ordinal (and temporal) position of the
recording epoch from which y was obtained. The value of e varies from 1 to
ne, the number of epochs in the data set under consideration. The index c
indicates the number of the recording channel from which v was obtained. The
value of c varies from 1 to I&, the number of recording channels. The index i
refers to the ordinal (and temporal) position of v within the current record-
ing epoch. The value of .1 varies from 1 to ni. Thus, y(l, 2 ,S) is the third
voltage point obtained from channel two in epoch one.

Values of v are organized in the epochchan files such that index i varies
most rapidly. (Recall that ni voltages from channel c in epoch e comprise one
record of epochchan.) The channel index, c, varies next most rapidly, and the
epoch index, e, varies least rapidly.

The input data file artifact.p2 contains several parameters that Artfil
uses to detect artifacts. The user should tailor the parameters for each
recording system and experiment and enter one number per line in the file as
ASCII-coded numbers in the order indicated below.

clipcrit - The criterion voltage for detecting EEG amplifier
clipping. For simplicity, the value of clipcrit is expressed as the voltage,
In uV at the amplifier inputs, sufficient to produce clipping. Any epoch of
data in which clipping is detected will not be corrected for ocular artifacts
ant. will be flagged for rejection. A conservative value of clipcrit, assuming
EOG amplifier gains of 20,000 and saturation voltages of 5.0 V, would be
225.0. A separate voltage criterion is used to detect EOG amplifier clipping
(see clipcrit2 below).

5

clipcrit2 - A second clipping-criterion voltage that is used to
detect EOG amplifier clipping. Again, Artfil detects amplifier clipping by
monitoring amplitudes expressed as amplifier-input voltages. The amplifier-
input voltages of the EOG, however, are much larger than those of the EEG.
Hence, the EOG and EEG amplifiers may be operated at different gains. If the
EOG and EEG amplifiers differ in gain settings (but are otherwise similar)
they will saturate at different input voltages.

A solution to this problem is to define separate clipping criteria
for the EEG and EOG amplifiers: Artfil uses the value of clipcrit2 to detect
EOG amplifier clipping. Any epoch in which the absolute voltage of the EOG
exceeds clipcrit2 will not be used in ocular-artifact correction and will be
flagged for rejection. A conservative value of clipcrit2, assuming EOG ampli-
fier gains 3f 2000 and output saturation voltages of 5.0 V, would be 2250.0,

blinkcrit - A criterion for detecting blinks. After the method of
Gratton et al. (2), blinkcrit is defined as a criterion value of the local
slope of the vertical EOG trace measured in a 10-ms time interval. Artfil
adjusts the input value of blinkcrit linearly to accommodate sampling inter-
vals that differ from 10 ms. As discussed previously, determining an appro-
priate value for blinkcrit may require some experimentation.

spikecrit - A rate of voltage change, in uV/ms, that identifies the
presence of a high-frequency spike in an EEG channel. The criterion is
applied to differences calculated tetween successive voltages in each epoch
and channel of data except for the vertical EOG. As noted, the EOG is not
scanned for spikes for fear of confusing them with blinks. A suggested value
of spikecrit is 33.0.

voltcrit - An absolute-voltage criterion, expressed in uV, used for
rejecting epochs of data. Any epo'h and channel of EEG data that contains an
absolute voltage exceeding voltcrit after the ocular artifact compensation
procedure has been applied will be flagged for rejection, A suggested value
of voltcrit is 40 uV.

rmscrit - A root-mean-squared voltage criterion used for rejecting
epochs of data (scaled in uV). The standard deviation of the points within a
given epoch and channel are compared to rmscrit. An epoch and channel of
data will be flagged for rejection if its rms voltage exceeds rmscrit after
ocular arti fact compensation has been performed.

deadcri, - A Loot-mean-squared voltage criterion used to identify
dead amplifiers (scaled in uV). Any epoch and channel with an overall rms
voltage lejs than daadcrit will be flagged for rejection. We suggest a value
near 4.0 uV.

samprate - The EEG and EOG sampling rate scaled in data points per
second. Artfil uses samprate when applying the EOG slope criterion
(blinkcrit) to the data. This variable is an integer.

The output file artifacts is a summary of the artifacts found by Artfil's
artifact detecting algorithms. The file is written to the directory in which
the program found the original epochchan file. the file contains one record
of artifact data for each epoch and channel of data examined. As in epochchan
files, data records for different channels are written in ordered blocks.

6

Each block of records contains the data from nQ channels for a single epoch.
Each record within a block corresponds to the data from one channel.

Each analytical program uses the information in artifacts differently.
Generally, a program opens epochchan.c and artifacts files simultaneously. It
then reads the information in the kth record of Artifacts, which is the
summary of artifacts for the physiological data stored in record k of
epochchan.c. The program uses this information to determine whether the epoch
of data in record k of epochchan.c is usable. If so, the program reads the
physiological data and analyzes it. If not, the program either proceeds to
another record or exits as appropriate. Each record in artifacts contains
ten, 2-byte-integer data fields described below.

e Interpretation

1. 1 if a clip or spike was detected in the EOG in the current epoch, or
if a clip, spike, rms, or absolute-voltage artifact was detected in
the EEG in the current epoch; 0 otherwise.

2. The number of the current epoch.

3. The number of the current channel.

4. 1 if the current channel is the vertical EOG and a blink was detected
in the current epoch; 0 otherwise.

5. 1 if the current channel is an EEG channel and an absolute-voltage
artifact was detected in the current epoch; 0 otherwise.

6. 1 if the current channel is an EEG channel and an rms artifact was
detected in the current epoch; 0 otherwise.

7. 1 if the current channel is dead in the current epoch; 0 otherwise.

8. 1 if the current channel is not the vertical EOG channel and a spike
artifact was found in the current epoch; 0 otherwise.

9. 1 if a clipping artifact was found in the current channel and epoch;
0 otherwise.

10. The overall rms amplitude of the current channel and epoch, rounded
to the nearest uV.

RUNNING THE PROGRAM

Artfil allows the user to specify several arguments on the command line
when the program is loaded. To run Artfil, the user enters:

programname ARGUMENTS

where programname is the name assigned to the executable version of the
program, and ARGUMENTS is a sequence cf command line arguments. Only the
first two arguments (-c and -n) are required; the rest are optional. The list
of valid command line arguments is:

7

-c<number of channels>, required
The number of channels of data in the epochchan file.

-n<number of points per epoch>, reQuired
The number of data points per channel per epoch.

[-v<vertical ey- channel>], default - I
The channel number of the vertical EOG channel if not channel 1.

r-i<lateral eye channel>], default - 2

The channel number of the lateral EOG channel if not channel 2.

[-F<first epoch to process>], default - I
The first epoch processed in the current run. If too large to
process at one time, an epochchan file can be processed as
blocks of epochs in sequential runs. The first and last epoch
of each run indicated with this argument and the -L argument.
If not specified, the first epoch processed will be epoch 1.

[-L<last epoch to process>], default - 10
The last epoch processed in the current run. This argument is
used in conjunction with the -F argument. If not specified, the
last epoch processed will be epoch 10.

[-e(chan. to omit from artifact filtering)], default - no omissions
Indicates which channel of data should not be processed by the
artifact filter. Data in any channel so indicated will be
written to the output file epochchan.c exactly as it was read
from the input file epochchan. The argument may be listed more
than once on a given command line.

[-m (if present, perform three-point filtering on data)], default -
none

Used for three-point smoothing of the input data.

[-V(verbose)], default - no verbose
If this argument is present, Artfil will print numerous messages
pertinent to the status of the analysis.

[-P<artifact parameter file path name>], default - artifacgtp2
Used if the artifact parameter file is not the default. Enter
the new file name.

[-I<input file path name>], default - epochchan
Used when the input physiological data file is not the default.
Enter the new file name.

[-O<output file path name>], default_- epochchan.c
Used when the output physiological data file is not the default.
Enter the new file name.

[-A<arttfact output file path name>], default - artifacts
Used when the artifact summary file is not t' default.
Enter the new file name.

8

For example, entering 'artfil' will displAy a help screen containing a
list of command line options. If we then enter:

artfil -clO -n250 -vl -12 -F125 -L250 -elO

the program will read 10 channels of data (-clO) comprising 250 data points
-ar channel per epoch (-n250). The program will treat channel 1 as the
vertical EOG (-v].) and channel 2 as the lateral EOG (-12). Artfil will
analy7e epoch 125 (-F125) first and epoch 250 (-L250) last but will not
examine data in channel. 10 (-.luj. If no data files are specified on the
command line, the default files will be used by the program.

3. SYSTEM REQUIREMENTS

DATA LIMITATIONS

For efficiency on the MASSCOMP 5500, the maximum number of channels is
20, the maximum number of epochs per rur. is 350, and the maximum number of
points per channel per epoch is 400. These values were set to allow Artfil to
run entirely with nonvirtual arrays. They can be modified depending on
available memory. To adjust the maximum channels, epochs, or points, the
following parameter statements can be edited ir, Artfil's source code:

parameter (MAXCHANNELS - 20) ! Maximum number of channels
parameter (MAXEPOCHS - 350) 1 Maximum number of epochs
parameter (MAXPOINTS - 40u, ! Maximum number of points per

epoch

COMPATIBILITY

Artfil runs on a MASSCOMP 5500 computer under MASSCOMP Real-Time Unix
Version 4.0. It is written in Fortran 77 with DEC VAX extensions, and it
should be reasonably compatible with most compilers on VAX, Hewlett-Packard,
IBM, and IBM PC-cempatible computers.

The major departure from standard Fortran 77 in Artfil is the use of do-
loops that end with "e-:ddc'" statements. Some compilers do not support control
structures of this type. They can be replaced easily with traditional loops.
Another difference from standard Fortran 77 is the use of command line argu-
ments in Artfil. If a compiler does not support command line arguments,
Artfil can be modified to read the argument values from a file.

Lastly, before the variable declaration statements, Artifil uses an

"implicit none" statement, which requires that all variables be explicitly
declared. It can be removed. Other incompatibilities may occur in input and
output statements, which are notoriously nonstandard across Fortran compilers.

9

REFERENCES

1. Barlow, J.S., "Artifact Processing (Rejection and Minimizatioin) in EEG
Data Processing." In F.H. Lopes da Silva, W. Storm van Leewen, and A.
Remond (Eds.), Clinical AD2lications of Computer Analysis of EEG and
other Neurophgsiological Signals, Elsevier Press, New York, NY, 1986,
pp. 15-64.

2. Gratton, G., COnles, G.H., and Donchin, E., "A New Method for Off-Line
Removal of Ocular Artifacts." Electroencephalography and Clinical
Neurophysiology, Vol. 55, pp. 468-484, 1983.

3. Stanny, R.R., MapDing the Event-related Potentials of the Brain;
Theoretical Issues. Technical Considerations. and Computer Programs,
NAMRL SR 88-1, Naval Aerospace Medical Research Laboratory, Pensacola,
FL, October, 1988.

10

APPENDIX

program artfil
c
c Author: Dr. Robert R. Stanny (NAMRL), September 1986
c

c Modification Log:
c

c 1. November 1987, Sam J. La Cour, Jr. (NARDAC)
c
c Made the program compatible with the files and methods used in
c data acquisition programs written for the system circa 1987.
c
c 2. January 1989, Sam J. La Cour, Jr. (NARDAC)
c
c Involved allowing specification of eye channels
c and changing the way in which blinks are scaled
c prior to calculation of scaling constant.
c
c 3. September 1989, Sam J. La Cour, Jr. (NARDAC)
c
c Place "clipcrit2" variable in parameter file after "clipcrit".
c
c 4. January 1990, Sam J. La Cour, Jr. (NARDAC)
c
c Modified calculation of adjusted blink and spike criteria.
c
c End Modifications
c
c Program Usage:
c
c 1. Command Line:
c
c artfil -c<number of channels>, required
c [-v<vertical eye channel>], default 1
c [-l<lateral eye channel>], default 2
c [-F<first epoch to process>], default 1
c [-L<last epoch to process>], default 10
c [-e<channel to omit from artifact filtering>],
c default no omissions
c [-m (if present, perform 3 point filtering on data)],
c default none
c [-V (verbose)], d-fault no verbose
c [-P<artifact parameter file path name>],
c default "artifact.p2"
c [-I<input file path nare>], default "epochchan"
c [-O<output file path name>], default "epochchan.c"
c [-A<artifact oitput file path name>].
c default "artifacts"
c
c 2. The program assumes the existance of "epochchan" in the current
c directory. This file contains the EOG and EEC data. Also, the
c file "epochinfo" must exist in the same directory. It contains
c the number of eppchs (first line) and the ntunber of points per

11

c epoch (second line). This is a text file.
c

c 3. The program reads the following parameters from the artifact
c parameter file:
c
c clipcrit uV voltage used to detect amplifier clipping in EEG channels
c clipcrit2 uV voltage used to detect amplifier clipping in EOG channels
c blinkcrit uV/10ms voltage change used as a criterion for
c identifying blinks in eye channels
c spikecrit uV/ims voltage change used as a criterion for
c identifying spikes in EEG channels
c voltcrit Absolute voltage for identifying an outlying data point
c rmscrit The critical epochwise~rms for identifying a noisy channel
c deadcrit The minimum epochwise rms for identifying a dead EEG channel
c samprate The integer EEG sampling rate (points / sec)
c
c The file is in the format of one variable per line, free format.
c

c Important Program Variables:
c
c vl(p) - Voltage at time point p, of a vector of EEG data (or sometimes
c EOG data). The vector contains real values in microvolts.
c The points are oiganized in temporal order from the first point
c of the epoch to the last point of the epoch.
c v2(p) - Voltage at point p of the vertical EOG. Organization
c of the vector is like that of vl.
c v3(p) - Same as v2 for the lateral eog.
c nptot - The total number of data points per channel (- np * ne).
c nc - # of channels.
c ne - Epochs of data per channel.
c np - Points/epoch/channel.
c LEYECHAN - Integer channel number of the lateral EOG data.
c VEYECHAN - Integer channel number of the vertical EOG data.
c nptot - The number of epochs actually analyzed * points/epoch.
c
c Input Data File Structure:
c
"c The EEG and EOG data files should be direct-access files containing
"c a vector of two-byte integer (integer*2) values in each record. The
"c record organization is:
c
c epoch 1 channel 1 vector
c epoch 1 channel 2 vector
c
c
c
c epoch 1 channel n vector
c epoch 2 channel 1 vector
c epoch 2 channel 2 vector
c

c
c
c epoch N channel n vector
c
c Notes:

12

C

c The number of channels cannot exceed 20, the maximum number of epochs
c cannot exceed 700 and the maximum points per epoch cannot exceed 400.
c These are limitations due to the largest arrays we can run on our computer
c and could be increased on other machines with more memory.
c
c Variable declarations:
c

implicit none

integer MAXCHANNELS,MAXEPOCHS
integer NETOT,MAXPOINTS, VECTORSIZE
integer ARTFILE,INFILE,OUTFILE,PARMFILE
integer INFOFILE
integer STDIN, STDOUT, STDERR

c
parameter (STDIN - 5) 1 Standard input
parameter (STDOUT - 6) t Standard output
parameter (STDERR - 6) 1 Standard error (usually 0)
parameter (MAXCHANNELS - 15) 1 Maximum number of channels
parameter (MAXEPOCHS - 700) 1 Maximum number of epochs
parameter (NETOT - 700) 1 Ditto
parameter (MAXPOINTS - 400) 1 Maximum number of points

c
"c May have to use some sort of dynamic scheme if the following get too big
"c (or just run the 1/2 epochs at a time, which is fine for an epochwise
"o algorithm)
c

parameter (VECTORSIZE - MAXPOINTS * MAXEPOCHS)
c

parameter (ARTFILE - 10)
parameter (INFILE - 11)
parameter (OUTFILE - 12)
parameter (PARMFILE - 13)
parameter (INFOFILE - 14)

c
c Switches
c

logical verbose, I Verbosity of displayed output
filter, I Subject the data to 3 point filter
eegchan(MAXCHANNELS) ! Indicates if the channel is to be

I artifa, t filtered
0

integer
i,j ,k,

nn, I Statistics counter
ios, I General purpose error return
reclen, I Epochchan record length in bytes
recno, I Current record number
VEYECHAN, I Vertical eye channel
LEYECHAN, I Lateral eye channel
nctot, I Total number of channels
nc, I Ditto, in another context
np, I Number of points/epoch
ichan, I Channel index

13

iepoch, ! Epoch index
ipoint, I Sampled point index
nepochs, I Number of epochs in a run
firstepoch, First epoch to process
lastepoch, Last epoch to process
delta, Actual sampling increment used
n, I General purpose counter
ival, I Integer command line argument value
getcwd, ! System call to get current working directory
retval, I General purpose return value
nominalfirst, ! Nominal (relative) first epoch number
nominallast, I Nominal (relative) last epoch number
nominale, I Nominal (relative) current epoch number
nptot, I Total number of points in a sample
pass, I Used for controlling artifact filtering loop
firstpoint, I First point to use in a v_() array
lastpoint, I Last point to use in a v_() array
ptemp, I Used to sequentially index through

v_() arrays
lencurrentpath, I Length of constructed current path
leninpath, I Length of constructed input file path
lenparmpath, 1 Length of output parameter file path
leninfopath, I Length of constructed information file path
lenartpath, I Length of artifact file path
lenoutpath I Length of constructed output file path

c
integer

blink(MAXCHANNELS,MAXEPOCHS), I Blink indicator
voltart(MAXCHANNELS,MAXEPOCHS), I Absolute voltage indicator
clipart(MAXCHANNELS,MAXEPOCHS), I Voltage clipping indicator
rmsart(MAXCHANNELS,MAXEPOCHS), I Excessive RMS indicator
deadchan(MAXCHANNELS,MAXEPOCHS), I Not enough RMS indicator
spike(MAXCHANNELS,MAXEPOCHS), I Voltage spike indicator
sumart(MAXCHANNELS,MAXEPOCHS) I Artifact summary variable

c
integer*2

dummy(MAXPOINTS), I Used to read input data
arts(lO) I Artifact indicator array

c
real

vl(VECTORSIZE), I Vector used to hold EEG
v2(VECTORSIZE), ! Lateral EOG vector
v3(VECTORSIZE), I Vertical EOG vector
rdummy(MAXPOINTS) I Input data converted to float

c
real

rms(MAXCHANNELS,MAXEPOCHS), I RMS (per channel and epoch)
mean(MAXCHANNELS,MAXEPOCHS) I Mean voltage (per channel and epoch)

c
real
r voltcrit, ! Absolute voltage criterion

blinkcrit, I Blink rate of change criterion
spikecrit, I Spike rate of change criterion
rmscrit, ! Excessive RMS criterion
deadcrit, I Dead channel criterion

14

cliperit, ! Clipping criterion

clipcrit2, I Adjusted eog clipping criterion
coy, I Calculated covariance
ss, I Sum of sc ares
tx, I Sum of x
ty, 1 Sum of y
vladj, I Value of vl with any corrections applied
v2adj, I Value of v2 with any corrections applied
rval, I Real command line value
b(MAXCHANNELS), I Slope of correction line for a given channel
samprate, I Sampling rate
d, Temporary variable
realpoints, ! Float(nptot)
realint, I Actual sampling interval
realn Float(number of points checked per channel)

c
character*256

arg, I Command line string
cval I Character command line value

c
character*l

option, I "ttransparm" returned option letter
optiontype I "transparm" returned option type

c
character*256

currentpath, I Current directory path
artpath, I Artifact file path (artifacts)
inpath, I Input file path (epochchan)
outpath, I Output file path (epochchan.c)
parmpath, I Parameter file path (artifact.p2)
infopath I Path to information file (epochinfo)

c

c Initialize command line variables with default values
c

n - 0
nc -0
np - 0
currentpath - '

inpath - 'epochchan'
call removespaces (inpath,leninpath)
outpath - 'epochchan.c'
call removespaces (outpath,lenoutpath)
parmpath - 'artifact.p2'
call removespaces (parmpath,lenparmpath)
artpath - 'artifacts'
call removespaces (artpath,lenartpath)
VEYECHAN - 1
LEYECHAN - 2
filter - .false.
do i- 1, MAXCHANNELS

eegchan(i) - .true.
enddo
firstepoch - 1
lastepoch - 10

15

verbose - .false.
c

c Process command line arguments
c

1001 n - n + 1
call getarg (n,argN
if (arg.eq.' ') goto 1002
call transparm (arg,option,optiontype,ival,rva',cval)

c
if (option.eq.'c') then

nc - ival
nctot - nc

else if (option.eq.'v') then
VEYECHAN - ival

else if (option.eq.'l') then
LEYECHAN - ival

else if (option.eq.'F') then
firstepoch - ival

else if (option.eq.'L') then
lastepoch - ival

else if (option.eq.'e') then
eegchan(ival) - .false.

else if (option.eq.'m') then
filter - .true.

else if (option.eq.'V') then
verbose - .true.

else if (option.eq.'I') then
inpath - cval
call removespaces (inpath,leninpath)

else if (option.eq.'O') then
outpath - cval
call removespaces (outpath,lenoutpath)

else if (option.eq.'P') then
parmpath - cval
call removespaces (parmpath,lenparmpath)

else if (option.eq.'A') then
artpath -cval
call removespaces (artpath,lenartpath)

endif
goto 1001

1002 continue
c
c If no parameters, display help and exit
C

if (n.eq.l) then
write (STDOUT,*) 'artfil: Evoked potential artifact detector'
write (STDOUT,*) ' and filter -- Single epoch corrections'
write (STDOUT,*)
write (STDOUT,*) -c<number of channels>, required'
write (STDOUT,*) [-v<vertical eye channel>], default 1'
write (STDOUT,*) [-l<lateral eye channel>], default 2'
write (STDOUT,*) [-F<first epoch to process>], default 1'
write (STDOUT,*) [-L<last epoch to process>], default 10'
write (STDOUT,*) [-e(channel to omit from artifact filtering)],'
write (STDOUT,*) default no omissions'

16

write (STDOUT,*) ' [-m(perform 3 point filtering on data)],'
write (STDOUT,*) default no filtering'
write (STDOUT,*) (-V(verbose)], default no verbose'
write (STDOUT,*) [-P<artifact parameter file path name>],'
write (STDOUT,*) default "artifact.p2"'
write (STDOUT:,*) [-I<input file path name>],'
write (STDOUT,i) default "epochchan"'
write (STDOUT,*) [-O<output file path name>],'
write (STDOUT,*) default "epochchan.c"'
write (STDOUT,*) [-A<artifact output file path name>],'
write (STDOUT,*) default "artifacts"'
goto 32767

endif
c

c Setup the file path information
C

retval - getcwd (currentpath)
call removespaces (currentpath,lencurrentpath)

c

i - 0
if (nctot.le.0) then

write (STDERR,*) 'artfil: Number of channels must not be ',

'zero or less'
i-l

endif
if (i.ne.0) then

goto 32767
endif

C

infopath - 'epochinfo'
call removespaces (infopath,leninfopath)

C

c Get number and length of epochs from information file
c

open (unit-INFOFILE, file-infopath(l:leninfopath),
status-'old', iostat-ios)

if (ios.ne.0) then
write (STDERR,*) 'artfil: Error opening epochinfo, ',

'iostat is ',Jos
goto 32767

endif
rewind (INFOFILE)

read (INFOFILE,*) nepochs I number of epochs
read (INFOFILE,*) np I number of points per epoch
close (INFOFILE)

c
lastepoch - nepochs
if (verbose) then

write (STDOUT,*) 'Number of epochs: ',nepochs
write (STDOUT,*) 'Number of points/epoch: ',np

endif
c
c Read the artifact parameter file:
c

17

open (PARMFILE, file-parmpath(l: lenparnipath),

if (ios~ne.O) then
write (STDERR,*) lartf il: Error opening parameter file, '

'iostat is 'Jios
goto 32767

endif
rewind (PARMFILE)
read (PARMF1LE,*) blinkcrit
read (PARMFILE,*) spikecrit
read (PARMFILE,*) voltcrit
read (PARMFILE,*) rmscrit
read (PARMFILE,*) deadcrit
read (PARMFILE,*) clipcrit
read (PARMFILE,*) clipcrit2
read (PARMFILE,*) sarnprate
close (PARMFILE)

if (verbose) then
write (STDOUT,*) 'Blink criteria is ',blinkcrit,' uV/l0ms'
write (STDOIJT,*) 'Spike criteria is ',spikecrit,' uV/nis'
write (STDOUT,*) 'Volt criteria is 1,voltcrit,' uV'
write (STDQIJT,*) 'RMS criteria is ',rmscrit,' uV'
write (STDOUT,*) 'Dead criteria is ',deadcrit,' uV'
write (STDOUT,*) 'EEG clipping criteria is ',clipcrit,' uV'
write (STDOUT,*) 'EOC clipping criteria is ',clipcrit2, 'uV'

write (STDOUT,*) 'Sampling rate is ',samprate,' Hz'
endif
if (verbose) then

write (STDOUT,*) 'Vertical eye channel is ',VEYECHAN
write (STDOUT,*) 'Lateral eye channel is ',LEYECHAN

endif
C

if (verbose) then
write (STDOIJT,*) 'Cain of vertical eye channel is '

clipcrit2/clipcrit,' % re other eeg channels'
endif

C

c Initialize data arrays:

do ichan - 1, nc
do iepoch - firstepoch, lastepoch

blink(ichan,iepoch) - 0
voltart(ichan,iepoch) - 0I
clipart(ichan,iepoch) - 0
rms(ichanjiepoch) - 0.
rmsart(ichan,iepoch) - 0
mean(ichan,iepoch) - 0,
deadchan(ichan,iepoch) - 0
spike(ichan,iepoch) - 0

enddo
enddo

c
c. DEFINE SOM'E VARIABLES:
c

18

"c Norninalfirst and nominallast are nominal epoch numbers.
"c Nominal first is always 1.
"c This is the first value in the .equence bounded by
"c firstepoch and lastepoch. nominallast is the ordiral value
"c of the last epoch in the sequence. Nptot is the rank of the
"c vl-v3 vectors.
c

nominalfirst - 1
nominallast - lastepoch - firstepoch + 1
nptot - np * (lastepoch - firstepoch + 1)

if (nptot.gt.VECTORSIZE) then
write (STDERR,*) 'artfil: Too many epochs, rerun with fewer'
goto 32767

endif
C

reclen - np * 2
C

if (verbose) then
write (STDOUT,*) 'First, last epochs:

firstepoch, lastepoch
write (STDOUT,*) 'Nominal first, last epochs:

nominalfirst, nominallast
write (STDOUT,*) 'Number of points total (nptot): ',

nptot
write (STDOUT,*) 'Number of points allowed:

VECTORSIZE
write (STDOUT,*) 'Number of points/epoch: ',

np
endif

c
"c Correct blink and spike voltage-change criteria for
"c quantization errors due to the obtained intervals
"c between time points.
c

realpoints - .01 * float(samprate)
C
c Set the calculating interval in points to the value nearest
c the number of points giving 10 ms.
c

delta - realpoints + 0.5
if (delta.it.l) then

delta - 1
endif
realint - float(delta)/float(samprate) I gives seconds

corresponding to delta
blinkcrit - blinkcrit * realint / .01 I adjust blinkcrit by

I ratio of delta to 10 ms
spikecrit - spikecrit * lO00./float(samprate)
if (verbose) then

write (STDOUT,*) 'Adjusted blink criteria is ',

blinkcrit,' uV/sample interval'
write (STDOUT,*) 'Adjusted spike criteria is ',

spikecrit,' uV/pt'
endif

19

C
"c Now, calculate "realn", the number of points to be checked per channel,
"c expressed as a floating point number
c

realn - float(np - 2 * delta)
if (verbose) then

write (STDOUT,*) 'The number of points checked per chan. is ',

realn
endif

c
c Open the input and output files
C

open (INFILE, file-inpath(l:leninpath), status-'old',
access-'dir', recl-reclen, iostat-ios)

if (ios.ne.0) then
write (STDERR,*) 'artfil: Error opening input file, ',

'iostat is ',ios
goto 32767

endif
open (OUTFILE, file-olitpath(l:lenoutpath), status-'unk',

azcess-'dir', resi-reclen)
if (ios.ne.O) then

write (STDERR,*) 'artfil: Error opening output file, ',

'iostat is ',ios
goto 32767

endif
c
c We need the eye movement data early on, so we
c get the vertical and horizontal eye data now
r

c First, the vertical eye channel...
c

if (verbose) then
write (STDOUT,*) 'Reading vertical eye channel data...'

endif
ichan - VEYECHAN
ptemp - 0
do iepoch - firstepo-h, lastepoch

recno - nctot * (iepoch - 1) + ichan
call quickio (INFILE, inpath(l:leninpath), 'old', 'read', recno,

dummy, np, ios)
if (ios.ne.O) then

write (STDERR,*) 'artfil: Error reading input file, ',

'iostat is ',ios
goto 32767

endif
C

"c Note that the filtering subprogram "smooth3p" scales everything down by a
"c factor of 10, to account for the assumption that the input file is in 1/10 uV
"c units (i.e. 10.6 uV is represented by 106 in the file). If filtering is not
"c performed, then we need to adjust the values ourselves.
c

if (filter) then
call smooth3p(dummy,rdummy,np)

else

20

do i - 1, np
rdummy(i) - dummy(i) / 10.0

enddo
endif
do ipoint - 1, np

ptemp - ptemp + 1
v2(ptemp) - rdummy(ipoint)

ei.ddo
enddo

c

c And then the lateral eye channel
c

if (verbose) then
write (STDOITT,*) 'Reading lateral eye channel data...

endif
ichan - LEYECHAN
ptemp - 0
do iepoch - firstepoch, lastepoch

recno - nctot * (iepoch - 1) + ichan
call quickio (INFILE, inpath(l:leninpath), 'old', 'read',

recno, dummy, np, ios)
if (ios.ne.0) then

write (STDERR.*) 'artfil: Error reading lateral eye ',

'channel data, iostat is ',ios
goto 32767

endif
if (filter) then

call smooth3p(dummy,rdummy,np)
else

do i - 1, np
rdummy(i) - dummy(i) / 10.0

enddo
endif
do ipoint - 1, np

ptemp - ptemp + 1
v3(ptemp) - rdummy(ipoint)

enddo
enddo

c
c DO A PRELIMINARY CHECK OF THE VERTICAL EOG:
c
c Before doing anything else, check the vertical eog channel for
c blinks and clipping. Do not check it for spikes, in order not to
c confuse blinks with spikes.
c

if (verbose) then
write (STDOUT,*) 'Checking vertical EOG for blinks and clipping...'

endif
iepoch - firstepoch - 1
do nominale - nominalfirst, nominallast

iepoch - iepoch + I
j -0
k -0
d -. 0
firstpoint - (noininale - 1) * np + 1

21

lastpoint - firstpoint + np - 1
do ipoint - firstpoirit, lastpoint-delta

if (abs(v2(ipoint)-v2(ipoint+delta)) .gt. blinkcrit) then
if (J.eq.O) then

j - ipoint
d - abs(v2(ipoint)-v2(ipoint+delta))

endif
blink(VEYECHiAN,iepoch) - 1

endif
if (abs(v2(ipoint)) .gt.clipcrit2) then

if (k.eq.O) then
k - ipoint

endif
clipart(VEYECHAN~iepoch) - 1

endif
enddo
if (verbose.and.blink(VEYEGHAN,iepoch) ,eq.l) then

print *,'Epoch ',nominale,' blink starting at ',

eni J-firstpoint,' Vdiff-',d

if (verbose.and.clipart(VEYEC1-AN,iepoch) .eq.1) then
print *,'Epoch ',nominale,' clipped at pt '

* k-firstpoint, I voltage is ',v2(k)
enclif

enddo
C

c First, write vert-Ical EOG directly to output file
C

if (verbose) then
write (STDOUT,*) 'Writing Veog to output ...'

endif
ichan - VEYECHAN
do iepoch - firstepoch, lastepoch

recno - nctot * (iepcch -1) + ichan
call quickio (T NFILE, inpath(l:leninpath), 'old', 'read', recno,

dummy, np, ios)
if (ios.ne.O) then

write (STDERR,*) 'artfil: Error reading vertical EOG 1,
'data, iostat is 'Jios

goto 32767
end if

call quickio (OIJTFILE, outpath(l:lenoutpath), 'unk' ,write' ,recrio,
dummy, np, ios) *
write (STDERR,*) 'artfil: Error writing vertical M~ ,

'data, iostat is ',ios
goto 32767

endif
enddo

C

c Now, process remaining channels (Lateral eog and all eeg)
C

if (verbose) then
write (,STDOUT,*) 'Processing remai-Ang chaninels...'

endif

22

C

pass - 0
ichan - 0

c
i50 continue. I Top of loop through channels
C

c First, check and correct the lateral eye channel. From that point on,
c process the eeg channels in order. The vertical eye channel is not
c checked.
c

if (pass.eq.O) then
ichan - LEYECHAN
pass - pass + 1

else if (pass.eq.l) then
ichan - 3
pass - pass + 1

else
ichan - ichan + 1
pass - pass + 1

endif
C

if (ichan.gt.nc) then
goto 31.00

endif
c

"c Skip the non-eeg channels, but write the data to the output file
"c unchanged
c

if (.not.eegchan(ichan)) then
do iepoch - firstepoch, lastepoch

recno - nctot * (iepoch - 1) + ichan
call quickio (INFILE, inpath(l:leninpath), 'old', 'read',

recno, dummy, np, ios)
if (ios.ne.0) then

write (STDERR,*) 'artfil: Error reading non-EEG ',

'data, iostat is ',ios
goto 32767

endif
call quickio (OUTFILE, outpath(l:lenoutpath),'unk','write'.

recno, dummy, np, ios)
if (ios.ne.0) then

write (STDERR,*) 'artfil: Error writing non-EEG ',

'data, iostat is ',Jos
goto 32767

endif
enddo
goto 150

endif
c

"c If we are analyzing EOG data, we read the EOG into
"c vl from v3. Otherwise we get the EEG from file.
"c Remember: vl is the work vector, v2 is the Veog vector,

and v3 is the Leog vector
c

if (ichan.eq.VEYECHAN) then

23

do i - 1, nptot
vl(i) - v2(i)

enddo
else if (ichan.eq.LEYECHAN) then

do i - 1, nptot
vl(i) - v3(i)

enddo
else

ptemp - 0
do iepoch - firstepoch, lastepoch

recno - nctot * (iepoch - 1) + ichan
call quickio (INFILE, inpath(l:leninpath), 'old',

'read', recno, dunjmy, np, ios)
if (ios.ne.0) then

write (STDERR,*) 'artfil: Error reading EEG '

'data, iostat is 'Jios
goto 32767

endif
if (filter) then

call smooth3p(dummy,rduntmy,np)
else

do i - 1, np
rdummy(i) - dummy(i) / 10.0

enddo
endif
do ipoint - 1, np,

ptemp - ptemp + 1
vl(ptemp) - rdummy(ipoint)

enddo
enddo

endif

c BEGIN THE PRE-CORRECTION ARTIFACT CHECK.

"c A final check for absolute voltage artifacts is performed after lateral
"c eye movement artifacts are removed from the eog, in the eye-artifact
"c filter section below
C

iepoch - firstepoch - 1
do nominale -nominalfirst, nominallast

iepoch -iepoch + 1
firstpoint -(nominale - 1) *np + 1
lastpoint -firstpoint + np -1
do ipoint -firstpoint+ delta, lastpoint-delta

rms(ichan,iepoch) -rms(ichan,iepochi)+vl.(ipolnt)**2.

mean(ichan, iepoch) mean(ichan, iepoch)+vl(ipoint)
C

c Spike detection:

if (ichan.ne.VEYECHAN) then
if ((vl(ipoint)-vl(ipoint+l)) .gt. spikecrit) then

spike(ichan,iepoch) - 1
end if

C

24

c Voltage clipping detection: Notice that there are separate criteria
c for the eye and frontal channels.
c

if ((ichan.eq.VEYECHAN).or.(ichan.eq.LEYECHAN)) then
if (abs(vl(ipoint)).gt.clipcrit2) then

clipart(ichan,iepoch) - 1
endif

else ! other channels (normal EEG channels)
if (abs(vl(ipoint)).gt.clipcrit) then

clipart(ichan,iepoch) - 1
if (verbose) then

print *,'Epoch ',iepoch,' channel ',ichan,
clipping at pt ',ipoint,' v- 1 ,

vl(ipoint)
endif

endif
endif

endif
enddo

c

c Finish calculating epoch means and mean squared values:
c

rms(ichan, iepoch) - (rms(ichan,iepoch)-
mean(ichan,iepoch)**2.0 / realn) / realn

mean(ichan,iepoch) - mean(ichan,iepoch)/realn
c
"c Try to detect possible rounding errors or precision problems. Do so
"c without stopping the program, but display an error message so the problem
"c can be investigated.
c

if (rms(ichan,iepoch).gt.O.O) then
rms(ichan,iepoch) - sqrt(rms(ichan,iepoch))

else
write (STDERR,*) 'artfil: RMS for epoch ',iepoch,

'channel ',ichan,
was bad (sumsq < sum**2/n). ',

' Setting to 0.0.1
rms(ichan,iepoch) - 0.

endif
c
c Excessive RMS detection:
c

if (rms(ichan,iepoch).gt.rmscrit) then
rmsart(ichan,iepoch) - 1

endif
enddo

c
c Dead channel detection: Note that eye channels are never declared dead.
c

if ((ichan.ne.LEYECHAN).and.(ichan.ne.VEYECHAN)) then
do iepoch - firstepoch, lastepoch

if (rms(ichan,iepoch).lt.deadcrit) then
deadchan(ichan,iepoch) - 1

endif
enddo

25

endif
C

c END PRE-CORRECTION ARTIFACT CHECK
c

c

c BEGIN EYE MOVEMENT FILTER AND FINAL ARTIFACT CHECK.
c
"c The eeg is checked for absolute amplitude artifacts at the end of this
"c block of code, after subtracting the scaled lateral eog from the eeg
c
c Blink correction:
c J
"c Regress the eeg on the eog in regions where the eog is changing rapidly
"c and get the proportionality constants, b(c), over all channels. Epochs
"c with spikes in the eeg or clipping in the eog or eeg are not used.
c
"c An inefficiency of this section of code is that blinks are detected each
"c time the code is executed.
c
c The lateral eog is corrected first.
c

if (ichan.ne.VEYECHAN) then
if (verbose) then

write (STDOUT,*) ' Regressing EEG on EOG...'
endif

c
c Process each epoch separately
c

iepoch - firstepoch - 1
do nominale - nominalfirst, nominallast

iepoch - iepoch + 1
if ((blink(VEYECHAN,iepoch) .eq. 1) .and.

(spike(ichan,iepoch) .eq. 0) .and.
(clipart(VEYECHAN,iepoch) .eq. 0) .and.
(clipart(ichan,iepoch) .eq. 0)) then

c
c Place the pointers at the proper place in the vector
c

firstpoint - (nominale - 1) * np + 1
lastpoint - (firstpoint + np) - 1

c
c Form the regression sums for this epoch
c

coy - 0.
SS - 0.
tx - 0.

ty - 0.
nn - 0
do ipoint - firstpoint+delta, lastpoint-delta

if (abs(v2(ipoint+delta)-v2(ipoint-delta)).gt.
blinkcrit) then

c
vladj - vl(ipoint)
v2adj - v2(ipoint)

26

C
tx - tx + v2adj
ty - ty + vladj
nr, - nn + 1
coy - coy + vladj * v2adj
ss - ss + v2adj * v2adj

endif
enddo

c
c Calculate the blink scaling constants for each channel
c

b(ichan) - 0.0
if (ss.eq.0.) then

if (nn.gt.0) then
write (STDERR,*)
'artfil: Attempt to divide VRTEYE ',

'covariance by zero at channel ',ichan
endif

else
if (nn.gt.0) then

ss - ss - (tx**2.)/float(nn)
cov- coy - (tx*ty)/float(nn)
if (ss.ne.0.0) then

b(ichan) - coy / ss
endif

endif
endif

c
"c Apply the correction factor. If something went wrong with the calculation
"c of b(, then it was set to zero, causing no change to the data.
c

do ipoint - firstpoint, lastpoint
vl(ipcint) - vl(ipoint) - b(ichan)*v2(ipoint,

enddo
endif I blink

enddo I nominale
endif I .not. VEYECHAN

c
c End blink correction
c
c If the Leog was just blink corrected, replace the uncorrected data
c in V3 with corrected data.
c

if (ichan .eq. LEYECHAN) then
do i - 1, nptot

v3(i) - vl(i)
enddo

endif
c
c Lateral eye movement correction:
c
"c The lateral eye channel is corrected for blinks on the first pass. The
"c blink corrected lateral eog channel is used to correct the eeg
"c thereafter. Once again, epochs with spikes or clipping are not used.
"c Also, once again, the lateral eog is not corrected for lateral eye movement.

27

C
if (ichan.ne.LEYECHAN) then

coV - 0.
ss - 0.
tx - 0.
ty - 0.
nn - 0
iepoch - firstepoch - 1
do nominale - nominalfirst, nominallast

iepoch - iepoch + 1
if ((spike(LEYECHAN,iepoch) .eq; 0) .and.

(spike(ichan,iepoch) .eq. 0) *and.
(clipart(LEYECHANiepoch) .eq. 0) .and.
(clipart(ichan,iepoch) .eq. 0)) then
firstpoint - (nominale - 1) *np + I
lastpoint - firstpoint + np - I
do ipoint-firstpoint+delta, lastpoint-delta

tx - tx + v3(ipoint)
ty - ty + vl(ipoint)
nn - nn + 1
coy -cov + vl(ipoint) * v3(ipoint)
ss - ss + v3(ipoint) * v3(ipoint)

enddo
endif

enddo
C

if (sa.eq.0.) then
if (nn.gt.0) then

write (STDERR,*) 'artfil: Attempt to divide LATEYE ',
'covariance by zero at channel ', ichan

endif
b(ichan) - 0.0

else
if (nn.gt.0) then

ss - ss - (tx**2.)/float(nn)
cov- coy - (tx*ty)/float(nn)
b(ichan) -cov / ss

else
b(ichan) - 0.

endif
endif

c
"c Subtract the scaled lateral eog and check the resulting data
"c for absolute ampli.tude artifacts. Epochs with spikes or clipping
"c are not corrected. Also, the "delta" points at the beginning
"c and end of each vector are not checked for artifacts. The lateral
"c eog is not checked for amplitude artifacts.
c

if (abs(b(ichan)) .gt. 0.) then
iepoch - firstepoch - I
do nominale - nominalfirst, nominallast

iepoch - iepoch + 1
c
c Check for identified artifacts:
c

28

if ((spike(LEYECHAN,iepoch) .eq. 0) .and.
(spike(ichan,iepoch) .eq. 0) .and.
(clipart(LEYECHAN,iepoch) .eq. 0) .and.
(clipart(ichan,iepoch) .eq. 0)) then

c
c Subtract the scaled eog if the epoch is good:
c

firstpoint - (nominale-l)*np+l
lastpoint - firstpoint+np-l
do ipoint - firstpoint, lastpoint

vl(ipoint) - vl(ipoint)-b(ichan)*v3(ipoint)
enddo

c
c Check the corrected eeg for large absolute voltages:
c

if (ichan ne. LEYECHAN) then
do ipoint - firstpoint+delta, lastpoint-delta

if (abs(vl(ipoint)).gt.voltcrit) then
voltart(ichan,iepoch) - 1

endif
enddo

endif I ,not. lateral eye channel
endif ! no spike artifacts

enddo I epoch
endif

endif
c
c END LATERAL EOG CORRECTION
c
c END EYE MOVEMENT FILTER
c
"c Convert to integer*2, rescale (converts to uV), and write
"c corrected EEG to the output file
c

if (verbose) then
print *,'Writing all epochs for channel ',ichan

endif
ptemp - 0
do iepoch - firstepoch, lastepoch

do ipoint - 1, np
ptemp - ptemp + 1

c
c The following results are rounded before truncating
c

if (vl(ptemp) .ge. 0) then
dummy(ipoint) - vl(ptemp) * 10. + .5

else
dummy(ipoint) - vl(ptemp) * 10. - .5

endif
enddo

c
recno - nctot * (iepoch-l) + ichan
call quickio (OUTFILE, outpath(l:lenoutpath), 'unk',

'write', recno, dummy, np, ios)
i (ios.ne.0) then

29

write (STDERR,*) lartfil: Error writing to output ',

'file, iostat is ',ios
goto 32767

endif
enddo

c
c End of channel loop
c

goto 150 I process next channel
C

c Finished with channels, clean up
C

3100 continue J

c
c Fill out the final records for the last epoch
c

do ipoint - 1, np
dummy(ipoint) - 0

enddo
c

recno - nctot * lastepoch
call quickio (OUTFILE, outpath(l:lenoutpath), 'unk', 'write', recno,

dummy, np, ios)
if (ios.ne.O) then

write (STDERR,*) 'artfil: Err- writing cleanup records, ',

'iostat is 'Jos
goto 32767

endif
c
c Close the data files
c

close (INFILE)
close (OUTFILE)

c
"c Consolidate some of the artifacts into a summary variable to be used
"c for deleting epochs in subsequent processing. Channels within epochs
"c are deletable if they contain clipping, large absolute or rms voltages
"c in any channel except the vertical eog channel. If there is clipping
"c in the vertical or lateral eog, the entire epoch is marked for deletion.
c

if (verbose) then
print *,'Creating artifact summary file'

endif
do ichan - 1, nc

do iepoch - firstepoch, lastepoch
if ((ichan.eq.LEYECHAN).and.(clipari(ichan,iepoch).eq.l)) then

if (verbose) then
print *,'Epoch ',iepoch,' Chan. ',ichan,

' Lateral eye channel clipping detected'
end if
sumart(ichaniepoch) - 1

endif
c

if ((ichan.eq.VEYECHAN).and.(clipart(ichan,iepoch).eq.l)) then
if (verbose) then

30

print *,'Epoch ',iepoch,' Chan. ',ichan,
I - Vertical eye channel clipping detected'

endif
sumart(ichin,iepoch) - 1

endif
c

if ((ichan.eq.LEYECHAN).and.(spike(ichan,iepoch).eq.l)) then
if (verbose) then

print *,'Epoch ',iepoch,' Chan. ',ichan,
- Lateral eye channel spike detected'

endif
sumart(ichan,iepoch) - I

endif
c

if ((ichan.ne.LEYECHAN).and.(ichan.ne.VEYECHAN))then
if (spike(ichan,iepoch).eq.l) then

if (verbose) then
print *,'Epoch ',iepoch,' Chan. ',ichan,

' Spike detected'
endif
sumart(ichan,iepoch) - 1

endif
if (voltart(ichan,iepoch).eq.l) then

if (verbose) then
print *,'Epoch ',iepoch,' Chan. ',ichan,

- Voltage artifact detected'
endif
sumart(ichan,iepoch) - 1

endif
if (clipart(ichan,iepoch).eq.1) then

if (verbose) then
print *,'Epoch ',iepoch,' Chan. ',ichan,

- Clipping detected'
endif
sumart(ichan,iepoch) - 1

endif
if (rmsart(ichan,iepoch).eq.l) then

if (verbose) then
print *,'Epoch ',iepoch,' Chan. ',ichan,

I - Excessive RMS detected'
endif

swnart(ichan, iepoch) - 1
endif
if (clipart(LEYECHAN,iepoch).eq.l) then

if (verbose) then
print *,'Epoch ',iepoch,' Chan. ',ichan,

- Artifact due to lateral eye clipping'
endif
sumart(ichan,iepoch) - 1

endif
if (clipart(VEYECHAN,iepoch).eq.l)then

if (verbose) then
print *,'Epoch ',iepoch,' Chan. ',ichan,

- Artifact due to vertical '
#eye clipping'

31

endif
sumart(ichanjiepoch) I

endif
endif

enddo
enddo

C

c Create the artifact summary file
C

artpath - 'artifacts'
call removespaces (artpath, lenartpath)

C

open (ARTFILE, file-artpath(l:lenartpath), status-'unk',
access-'dir' , recl-20, iostat-ios)

if (ios~ne.0) then
write (STDERR,*) 'artfil: Error opening artifact file, '

'iostat is ',ios
goto 32767

endif
C

do iepoch - firstepoch, lastepoch
do ichan - 1, nc

arts(l) - sumart(ichanjiepoch)
arts(2) - iepoch
arts(3) - ichan
arts(4) - bli.nk(ichan,iepoch)
arts(5) - voltart(ichanjiepoch)
arts(6) - rmsart(ichan,iepoch)
arts(7) -deadchan(ichan,iepoch)
arts(8) - spike(ichanjiepoch)
arts(9) - clipart(ichanjiepoch)
arts(10) - rms(ichanjiepoch) + .5
recno - (iepoch - 1) * nctot + ichan
write (ARTFILE, rec-recno, iostat-ios) arts
if (ios.ne.0) then

write (STDERR,*) 'artfil: Error writing to '

artifact summary file, '

iostat is 'J, os
goto 32767

endif
c
c Fill out the records for the last epoch, if neccessary.
c

if ((iepoch.eq.lastepoch).and.
(ichan.eq.nc).and.(tnc.ne.nctot)) then
do i - 1, 10

arts(i) - 0
enddo
recno - nctot * lastepoch
write (ARTFILE, rec-recno, iostat-ios) arts
if (ios.ne.Q) then

write (STDERR,*) 'artfil: Error writing '

'cleanup records to artifact '

'summary file, iostat is #Jios
goto 32767

32

endif
endif

enddo
enddo
close (ARTFILE)

32767 stop
end

subroutine smooth3p (dummy, rdummy, np)
C

c Converts integer*2 vectors to real, divides each element by 10,
c and computes a three-point smooth.
c

integer*2 dummy(np)
real rdummy(np)
integer np, p
real zl, z2, z3, kl, k2

c
c The smoothing algorithm is x(t) - .25x(t-2)+.5x(t)+.25x(t+l)
c

kl - .025
k2 - .05
z2 - float(dummy(l))
z3 - float(dummy(2))

C

do p - 2, np - 1
zl - z2
z2 - z3
z3 - float(dummy(p+l))
rdummy(p) - kl * zl + k2 * z2 + kl * z3

enddo
c

"c Set the first and last elements of the smoothed vector
"c the values of their immediate neighbors.
c

rdummy(l) - rdummy(2)
rdummy(np) - rdummy(np-l)

c
return
end

subroutine transparm (parmstr,retoption,rettype,
retival,retrval,retcval)

integer nnumind,nintind
parameter (nnumind - 15)
parameter (nintind - 12)

c

character*(*) parmstr
character*256 retcval,parm
character*l rettype,retoption,

numind(nnumind),intind(nintind)

33

c

integer retival,entirelength,parmlength
integer ij,ios
real retrval

C
data numind /'0','I','2' '3','4' '5' '6' '7' '8','9','E , 'e'da~ tnid / 0','1' , 2 ! , 4 , '7 , 8 , 9 , ,

data intind,/'0','i','2','3', 4','5','6','7','8','9','+',
c

c Given a parameter string in the format '-' option '...string...'
C

c a) extract the option (one character).
c b) determine the type of the string as integer, real, or character.
c c) convert integer and real values to internal representation.
c d) return values to calling program.
c
"c Author: Sam J. La Cour, Jr.
"c Date: February 20, 1987
c

"c First, get the length of the entire string. In order for it to be a valid
"c option string, the length must be at least 2.
c

call getlen (parmstr,i)
if (i.lt.2) then

retoption - I I
rettype - Is'
return

endif
c
"c Next, see if it is a valid option parameter string. In order for this to
"c be true, the fiist character must be a '-', followed by an option character,
"c followed by an optional string.
c

if (parmstr(l:l).ne.'-') then
ratoption - I I
rettype - 'u'
return

endif
c
"c Ok, we have a '-', let's get the option character. It can be anything
"c except a blank.
c

retoption - parmstr(2:2)
c
"c Now that we have a legal option character, the remainder of the option
"c string needs to be parsed, if present. If the length of the option
"c string is equal 2, just go ahead and exit.
c

if (entirelength.eq.2) then
rettype - 'n'
return

endif
c
c Get the actual length of the rest of the parameter string.
c

34

parm - parmstr(3:)
call getlen (parm,parmlength)
if (parmlength.le.0) then

rettype - In'

return
endif

c

"c Scan the parameter string for non-numeric characters.
"c For our purposes, numeric characters are '0'..'9', 'e','E','-','+' and '.'

"c All other characters classify the string as non-numeric, and therefore
"c the type is forced to be character. After this is done, if the the type is
"c determined to be possibly numeric, a further scan is done to eliminate the
"c 'e','E' and '.'. This filter will determine if the number is possibly an
"c integer value. Once this is done, internal reads will be used to do the
c actual conversion from string to internal format. Any failures in the
"c conversion, due to things like '1.Oeel.3-', will be flagged here. If all
"c is successful, the type and value will have been determined and
"c returned to the main program.
c
c Pass through any numerics, send all others to type CHARACTER
c

do 1010 i-l,parmlength
do 1020 j-l,nnumind
if (parm(i:i).eq.numind(j)) goto 1010

1020 continue
c
"c A match with the numeric values was not found, the string must
"c be of type CHARACTER, therefore, proceed to that section.
c

goto 4000
1010 continue
c
c All characters in the string passed the numeric test, now lets
c try to find out if the number is integer or real by looking for
c characters which would indicate that the value was a real number,
c such as decimal points or exponentials.
c
c Pass through any integers, send all others to type REAL
c

do 2010 i-l,parmlength
do 2020 j-1,nintind
if (parm(i:i).eq.intind(j)) goto 2010

2020 continue
c
"c A match with the integer values was not found, the string must
"c be of type REAL, therefore proceed to that section.
c

goto 3000
2010 continue
c
"c The value has only legal integer characters in it, namely '0'..'9' and '-','+'.

"c Try to convert it. Any errors are due to incorrect format.
c

read (parm(l:parmlength),*,iostat-ios) retival
if (ios.ne.0) then

35

rettype - 'u'
else

rettype - IV
endif
return

c
c The value has only legal real characters in it, namely '0'..'9','e','E','+',
c '-','.'. Try to convert it.
c
3000 continue

read (parm(l:parmlength),*,iostat-ios) reurval
if (ios.ne.0) then

rettype - 'u'
else

rettype - Ir°
endif
return

c

c Character is the only type left (a trash disposal.,.)
c
4000 continue

rettype - 'c'
retcval - parm
return
end

k*********************************

subroutine removespaces (instrin8 newlen)
c
c Removes spaces and nulls from a string and determines the length of the string
c

character*(*) instring
character*256 temp
integer i, newlen

c
newlen - 0
temp - '
do 1000 i-l,len(instring)
if (instring(i:i).ne.' '.&nd.instring(i:i).ne.char(O)) then

newlen - newlen + 1
temp(newlen:newlen) - instring(i:i)

endif
1000 continue

instring - temp
return
end

subroutine getlen (str,strlength)
c
"c Given any length string, returns the length of the string with all
"c trailing spaces removed. In other words, the length of the string
"c scanned from the right until the first non blank character.

36

c
c Examples:
c
c 'foo bar' returns a length of 7
c 'foo bar ' also returns a length of 7
c ' foo bar' returns a length of 9
c
"c Author: Sam J. La Cour, Jr.
"c Date: February 20, 1987
c

character*(*) str
integer strlength,i,j

c

c Ignore the trivial case and exit
c

j - len(str)
if (j.le.0) then

strlength - 0
return

endif
c
"c Scan from the right, constantly updating 'strlength'. Exit when the
"c entire string has been scanned. If no non-blanks are found, the length
"c will be zero.
c

strlength - j
do 1000 i-l,j

if (str(strlength:strlength).ne.' ') go to 32767
strlength - strlength - 1

1000 continue
32767 return

end

subroutine casefold (string)
c

"c Routine to change all characters in a string to upper case for comparison
"c This is most useful on things like "y" or "Y" inputs, where it doesn't matter
"c what the case of the response is.
c

character*(*) string
integer i,j,l

c
1 - len(string)
do 1000 i-l,l
j - ichar(string(i:i))
if (j ge.97.and.j.le.122) then

j - j -

string(i:i) - char(j)
endif

1000 continue
return
end

37

subroutine quickio (unit,file ~status,operation,
recno,buffer,size, jos)

C

character*(*) file,status,operation
character*20 tempop,
integer unit,recl,ios,recno,size
integer*2 buffer(siz2)

C

tempop - operation
call casefold (tempop)
if (tempop.eq.'OPEN') then

if (recl.gt.O) then
recl - size * 2
open (unit-unit,file-file,status-status,access-'direct',

redl-redl,iostat-ios)
endif

else if (tempop.eq.'READ') then
read (unit-unit, rec-recno ,iostat'-ios) buffer

else if (tempop.eq.'WRITE') then
write (unit-unit,rec-recno, iostat-ios) buffer

endif
return
end

38

Other Related NAMRL Publications

Reeves, D.L. and Gadolin, R.E., Sustained/Continuous Operations Subgroup of
the Department of Defense Human Factors Engineering Technical Group:
Program Summary and Abstracts from the 8th Semiannual Meeting, NAMRL
Technical Memorandum 89-2, Naval Aerospace Medical Research Laboratory,
Pensacola, FL, April 1989.

